How to write the electron configuration of an element? | ChemTok (2023)

Electron configuration is another basic concept you have to be heard when learning chemistry. As I think it lays the foundation for almost every part of chemistry. In this chapter, I’m going to tell you how to write the electron configuration of an element correctly.

So, let’s dive in.

Firstly, let’s see what an electron configuration of an element is.

What is an electron configuration of an element?

An electron configuration is a standard notation that describes how electrons have been distributed in their atomic orbitals. It shows all electrons in each subshell with the energy level number where the electrons are located. The electron configuration of an element helps to determine the valency of that element, predict the atomic spectra, and to understand its properties since elements with similar electron configurations tend to exhibit similar properties.

Now, let’s see how to write the electron configuration of an element.

How to write the electron configuration of an element?

When writing the electron configurations, there are some principles that you have to keep in mind. The first one is the Auf Bau principle.

The Auf Bau principle

According to this principle, electrons are filled to the energy levels around the nucleus from the orbital, which has the lowest energy or the nearest orbital to the nucleus, to orbitals in the order of increasing energy. To clarify, this can simply represent as follows.

How to write the electron configuration of an element? | ChemTok (1)

Thus, the energy of orbitals increases in the following order.

1s< 2s< 2p< 3s< 3p< 4s< 3d< 4p< 5s< 4d< 5p< 6s< 4f< 5d< 6p< 7s……………

Then, let’s see how to write the electron configuration of an element step by step.

According to the number of electrons present in the atom, write the orbitals respectively as the inner orbitals are completely filled with electrons and in order from closest to the nucleus to away from the nucleus. Moreover, you may or may not separate orbitals by commas.

How to write the electron configuration of an element? | ChemTok (2)

So, let’s go through an example.

Phosphorus- 15
  • 1s2 2s2 2p6 3s2 3p3
  • 1s2, 2s2, 2p6, 3s2, 3p3
  • 1s2 2s2 2p6 3s2 3p3

In general, the most convenient way is to write the electron sequence without separating the orbitals by separating the main energy levels with blanks.

1. H:

1s1

2. He:

1s2

3. Li:

1s2 2s1

4. Be:

1s2 2s2

5. B:

1s2 2s2 2p1

6. C:

1s2 2s2 2p2

7. N:

1s2 2s2 2p3

8. O:

1s2 2s2 2p4

9. F:

1s2 2s2 2p5

10. Ne:

1s2 2s2 2p6

11. Na:

1s2 2s2 2p6 3s1

12. Mg:

1s2 2s2 2p6 3s2

13. Al:

1s2 2s2 2p6 3s2 3p1

14. Si:

1s2 2s2 2p6 3s2 3p2

15. P:

1s2 2s2 2p6 3s2 3p3

16. S:

1s2 2s2 2p6 3s2 3p4

17. Cl:

1s2 2s2 2p6 3s2 3p5

18. Ar:

1s2 2s2 2p6 3s2 3p6

19. K:

1s2 2s2 2p6 3s2 3p6 4s1

20. Ca:

1s2 2s2 2p6 3s2 3p6 4s2

21. Sc:

1s2 2s2 2p6 3s2 3p6 3d1 4s2

22. Ti:

1s2 2s2 2p6 3s2 3p6 3d2 4s2

23. V:

1s2 2s2 2p6 3s2 3p6 3d3 4s2

24. Cr:

1s2 2s2 2p6 3s2 3p6 3d4 4s2

  • Here, the electron configuration of (n-1) d4 ns2 is unstable. Thus, an electron from the s orbital migrates to the d orbital and makes (n-1) d5 ns2 electron configuration. It is a stable configuration compared with the early one. So, we can write the correct electron configuration of Cr as follows.

Cr: 1s2 2s2 2p6 3s2 3p6 3d5 4s1

25. Mn:

1s2 2s2 2p6 3s2 3p6 3d5 4s2

26. Fe:

1s2 2s2 2p6 3s2 3p6 3d6 4s2

27. Co:

1s2 2s2 2p6 3s2 3p6 3d7 4s2

28. Ni:

1s2 2s2 2p6 3s2 3p6 3d8 4s2

29. Cu:

1s2 2s2 2p6 3s2 3p6 3d9 4s2

  • Here, the electron configuration of (n-1) d9 ns2 is unstable, and therefore an electron from the s orbital migrates to the d orbital and forms a more stable (n-1) d10 ns1 electron configuration. So, we can write the actual electron configuration of Cu as follows.

Cu: 1s2 2s2 2p6 3s2 3p6 3d10 4s1

30. Zn:

1s2 2s2 2p6 3s2 3p6 3d10 4s2

31. Ga:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p1

32. Ge:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p2

33. As:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p3

34. Se:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p4

35. Br:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p5

36. Kr:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6

37. Rb:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 5s1

38. Sr:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 5s2

39. Yr:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d1 5s2

40. Zr:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d2 5s2

41. Nb:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d3 5s2

42.Mo:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d5 5s1

43. Tc:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d5 5s2

44. Ru:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d6 5s2

45. Rh:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d7 5s2

46. Pd:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p64d8 5s2

47. Ag:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p2 4d10 5s1

48. Cd:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2

49. In:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p1

50. Sn:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p2

51. Sb:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p3

52. Te:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p4

53. I:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p5

54. Xe:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6

55. Cs:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6 6s1

56. Ba:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6 6s2

57. La:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f1 5s2 5p6 6s2

58. Ce:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f2 5s2 5p6 6s2

59. Pr:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f3 5s2 5p6 6s2

60. Nd:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f4 5s2 5p6 6s2

How to write the electron configuration of an ion?

As you know, there are two types of ions: cations and anions. So, first, let’s see how cations are done.

Electron configuration of a cation

When forming cations, electrons are removed from the farthest energy level. So, when you are writing the electron configuration of a cation, all you have to do is subtract the number corresponding to the cation charge from the farthest energy level. So, let’s go ahead with some examples.

11. Na: 1s2 2s2 2p6 3s1

Na+: 1s2 2s2 2p6

13. Al: 1s2 2s2 2p6 3s2 3p1

Al3+: 1s2 2s2 2p6

20. Ca: 1s2 2s2 2p6 3s2 3p6 4s2

Ca2+: 1s2 2s2 2p6 3s2 3p6

22. Ti: 1s22 2s2 2p6 3s2 3p6 3d2 4s2

Ti3+: 1s2 2s2 2p6 3s2 3p6 3d1

26. Fe: 1s2 2s2 2p6 3s2 3p6 3d6 4s2

There are two common cations of Fe: Fe2+ and Fe3+.

Fe2+: 1s2 2s2 2p6 3s2 3p6 3d6

Fe3+: 1s2 2s2 2p6 3s2 3p6 3d5

29. Cu: 1s2 2s2 2p6 3s2 3p6 3d10 4s1

Like Fe, Cu also has two common cations which are Cu+ and Cu2+.

Cu+: 1s2 2s2 2p6 3s2 3p6 3d10

Cu2+: 1s2 2s2 2p6 3s2 3p6 3d9

30. Zn: 1s2 2s2 2p6 3s2 3p6 3d10 4s2

Zn2+: 1s2 2s2 2p6 3s2 3p6 3d10

Electron configuration of an anion

When writing the electron configuration of an anion, add the number of electrons equal to the charge to the element’s atomic formula and write as usual. So, here are some examples for you.

1. H: 1s1

H: 1s2

7.N: 1s2 2s2 2p3

N3-:1s2 2s2 2p6

8. O: 1s2 2s2 2p4

O2-: 1s2 2s2 2p6

15. P: 1s2 2s2 2p6 3s2 3p3

P3-: 1s2 2s2 2p6 3s2 3p6

16. S: 1s2 2s2 2p6 3s2 3p4

S2-: 1s2 2s2 2p6 3s2 3p6

17. Cl: 1s2 2s2 2p6 3s2 3p5

Cl: 1s2 2s22p6 3s2 3p6

35. Br: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p5

Br:1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6

Conclusion

So, I hope that now you can write the electron configuration of any element or ion. If you got any doubt, feel free to ask.

Top Articles
Latest Posts
Article information

Author: Edmund Hettinger DC

Last Updated: 03/02/2023

Views: 6406

Rating: 4.8 / 5 (58 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Edmund Hettinger DC

Birthday: 1994-08-17

Address: 2033 Gerhold Pine, Port Jocelyn, VA 12101-5654

Phone: +8524399971620

Job: Central Manufacturing Supervisor

Hobby: Jogging, Metalworking, Tai chi, Shopping, Puzzles, Rock climbing, Crocheting

Introduction: My name is Edmund Hettinger DC, I am a adventurous, colorful, gifted, determined, precious, open, colorful person who loves writing and wants to share my knowledge and understanding with you.