Electron configuration is another basic concept you have to be heard when learning chemistry. As I think it lays the foundation for almost every part of chemistry. In this chapter, I’m going to tell you how to write the electron configuration of an element correctly.
So, let’s dive in.
Firstly, let’s see what an electron configuration of an element is.
What is an electron configuration of an element?
An electron configuration is a standard notation that describes how electrons have been distributed in their atomic orbitals. It shows all electrons in each subshell with the energy level number where the electrons are located. The electron configuration of an element helps to determine the valency of that element, predict the atomic spectra, and to understand its properties since elements with similar electron configurations tend to exhibit similar properties.
Now, let’s see how to write the electron configuration of an element.
How to write the electron configuration of an element?
When writing the electron configurations, there are some principles that you have to keep in mind. The first one is the Auf Bau principle.
The Auf Bau principle
According to this principle, electrons are filled to the energy levels around the nucleus from the orbital, which has the lowest energy or the nearest orbital to the nucleus, to orbitals in the order of increasing energy. To clarify, this can simply represent as follows.

Thus, the energy of orbitals increases in the following order.
1s< 2s< 2p< 3s< 3p< 4s< 3d< 4p< 5s< 4d< 5p< 6s< 4f< 5d< 6p< 7s……………
Then, let’s see how to write the electron configuration of an element step by step.
According to the number of electrons present in the atom, write the orbitals respectively as the inner orbitals are completely filled with electrons and in order from closest to the nucleus to away from the nucleus. Moreover, you may or may not separate orbitals by commas.
So, let’s go through an example.
Phosphorus- 15
- 1s2 2s2 2p6 3s2 3p3
- 1s2, 2s2, 2p6, 3s2, 3p3
- 1s2 2s2 2p6 3s2 3p3
In general, the most convenient way is to write the electron sequence without separating the orbitals by separating the main energy levels with blanks.
1. H:
1s1
2. He:
1s2
3. Li:
1s2 2s1
4. Be:
1s2 2s2
5. B:
1s2 2s2 2p1
6. C:
1s2 2s2 2p2
7. N:
1s2 2s2 2p3
8. O:
1s2 2s2 2p4
9. F:
1s2 2s2 2p5
10. Ne:
1s2 2s2 2p6
11. Na:
1s2 2s2 2p6 3s1
12. Mg:
1s2 2s2 2p6 3s2
13. Al:
1s2 2s2 2p6 3s2 3p1
14. Si:
1s2 2s2 2p6 3s2 3p2
15. P:
1s2 2s2 2p6 3s2 3p3
16. S:
1s2 2s2 2p6 3s2 3p4
17. Cl:
1s2 2s2 2p6 3s2 3p5
18. Ar:
1s2 2s2 2p6 3s2 3p6
19. K:
1s2 2s2 2p6 3s2 3p6 4s1
20. Ca:
1s2 2s2 2p6 3s2 3p6 4s2
21. Sc:
1s2 2s2 2p6 3s2 3p6 3d1 4s2
22. Ti:
1s2 2s2 2p6 3s2 3p6 3d2 4s2
23. V:
1s2 2s2 2p6 3s2 3p6 3d3 4s2
24. Cr:
1s2 2s2 2p6 3s2 3p6 3d4 4s2
- Here, the electron configuration of (n-1) d4 ns2 is unstable. Thus, an electron from the s orbital migrates to the d orbital and makes (n-1) d5 ns2 electron configuration. It is a stable configuration compared with the early one. So, we can write the correct electron configuration of Cr as follows.
Cr: 1s2 2s2 2p6 3s2 3p6 3d5 4s1
25. Mn:
1s2 2s2 2p6 3s2 3p6 3d5 4s2
26. Fe:
1s2 2s2 2p6 3s2 3p6 3d6 4s2
27. Co:
1s2 2s2 2p6 3s2 3p6 3d7 4s2
28. Ni:
1s2 2s2 2p6 3s2 3p6 3d8 4s2
29. Cu:
1s2 2s2 2p6 3s2 3p6 3d9 4s2
- Here, the electron configuration of (n-1) d9 ns2 is unstable, and therefore an electron from the s orbital migrates to the d orbital and forms a more stable (n-1) d10 ns1 electron configuration. So, we can write the actual electron configuration of Cu as follows.
Cu: 1s2 2s2 2p6 3s2 3p6 3d10 4s1
30. Zn:
1s2 2s2 2p6 3s2 3p6 3d10 4s2
31. Ga:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p1
32. Ge:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p2
33. As:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p3
34. Se:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p4
35. Br:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p5
36. Kr:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6
37. Rb:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 5s1
38. Sr:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 5s2
39. Yr:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d1 5s2
40. Zr:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d2 5s2
41. Nb:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d3 5s2
42.Mo:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d5 5s1
43. Tc:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d5 5s2
44. Ru:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d6 5s2
45. Rh:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d7 5s2
46. Pd:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p64d8 5s2
47. Ag:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p2 4d10 5s1
48. Cd:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2
49. In:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p1
50. Sn:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p2
51. Sb:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p3
52. Te:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p4
53. I:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p5
54. Xe:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6
55. Cs:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6 6s1
56. Ba:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6 6s2
57. La:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f1 5s2 5p6 6s2
58. Ce:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f2 5s2 5p6 6s2
59. Pr:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f3 5s2 5p6 6s2
60. Nd:
1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f4 5s2 5p6 6s2
How to write the electron configuration of an ion?
As you know, there are two types of ions: cations and anions. So, first, let’s see how cations are done.
Electron configuration of a cation
When forming cations, electrons are removed from the farthest energy level. So, when you are writing the electron configuration of a cation, all you have to do is subtract the number corresponding to the cation charge from the farthest energy level. So, let’s go ahead with some examples.
11. Na: 1s2 2s2 2p6 3s1
Na+: 1s2 2s2 2p6
13. Al: 1s2 2s2 2p6 3s2 3p1
Al3+: 1s2 2s2 2p6
20. Ca: 1s2 2s2 2p6 3s2 3p6 4s2
Ca2+: 1s2 2s2 2p6 3s2 3p6
22. Ti: 1s22 2s2 2p6 3s2 3p6 3d2 4s2
Ti3+: 1s2 2s2 2p6 3s2 3p6 3d1
26. Fe: 1s2 2s2 2p6 3s2 3p6 3d6 4s2
There are two common cations of Fe: Fe2+ and Fe3+.
Fe2+: 1s2 2s2 2p6 3s2 3p6 3d6
Fe3+: 1s2 2s2 2p6 3s2 3p6 3d5
29. Cu: 1s2 2s2 2p6 3s2 3p6 3d10 4s1
Like Fe, Cu also has two common cations which are Cu+ and Cu2+.
Cu+: 1s2 2s2 2p6 3s2 3p6 3d10
Cu2+: 1s2 2s2 2p6 3s2 3p6 3d9
30. Zn: 1s2 2s2 2p6 3s2 3p6 3d10 4s2
Zn2+: 1s2 2s2 2p6 3s2 3p6 3d10
Electron configuration of an anion
When writing the electron configuration of an anion, add the number of electrons equal to the charge to the element’s atomic formula and write as usual. So, here are some examples for you.
1. H: 1s1
H–: 1s2
7.N: 1s2 2s2 2p3
N3-:1s2 2s2 2p6
8. O: 1s2 2s2 2p4
O2-: 1s2 2s2 2p6
15. P: 1s2 2s2 2p6 3s2 3p3
P3-: 1s2 2s2 2p6 3s2 3p6
16. S: 1s2 2s2 2p6 3s2 3p4
S2-: 1s2 2s2 2p6 3s2 3p6
17. Cl: 1s2 2s2 2p6 3s2 3p5
Cl–: 1s2 2s22p6 3s2 3p6
35. Br: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p5
Br–:1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6
Conclusion
So, I hope that now you can write the electron configuration of any element or ion. If you got any doubt, feel free to ask.